Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 3027-3036, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629563

RESUMO

Biochar and modified biochar have been widely used as remediation materials in heavy metal-contaminated agricultural soils. In order to explore economical and effective materials for the remediation of cadmium (Cd)-contaminated acidic purple soil, distillers 'grains were converted into distillers' grains biochar (DGBC) and modified using nano-titanium dioxide (Nano-TiO2) to produce two types of modified DGBCs:TiO2/DGBC and Fe-TiO2/DGBC. A rice pot experiment was used to investigate the effects of different biochar types and application rates (1%, 3%, and 5%) on soil properties, nutrient content, Cd bioavailability, Cd forms, rice growth, and Cd accumulation. The results showed that:① DGBC application significantly increased soil pH, cation exchange capacity (CEC), and nutrient content, with TiO2/DGBC and Fe-TiO2/DGBC exhibiting better effects. ② DGBC and modified DGBCs transformed Cd from soluble to insoluble forms, increasing residual Cd by 1.22% to 18.46% compared to that in the control. Cd bioavailability in soil decreased significantly, with available cadmium being reduced by 11.81% to 23.67% for DGBC, 7.64% to 43.85% for TiO2/DGBC, and 19.75% to 55.82% for Fe-TiO2/DGBC. ③ DGBC and modified DGBCs increased rice grain yield, with the highest yields observed at a 3% application rate:30.60 g·pot-1 for DGBC, 37.85 g·pot-1 for TiO2/DGBC, and 39.10 g·pot-1 for Fe-TiO2/DGBC, representing 1.13, 1.40, and 1.44 times the control yield, respectively. Cd content in rice was significantly reduced, with grain Cd content ranging from 0.24 to 0.30 mg·kg-1 for DGBC, 0.16 to 0.26 mg·kg-1 for TiO2/DGBC, and 0.14 to 0.24 mg·kg-1 for Fe-TiO2/DGBC. Notably, Cd content in rice grains fell below the food safety limit of 0.2 mg·kg-1 (GB2762-2022) at 5% for TiO2/DGBC and 3% and 5% for Fe-TiO2/DGBC. In conclusion, Nano-TiO2 modified DGBC effectively reduced the bioavailability of soil Cd through its own adsorption and influence on soil Cd forms distribution, thus reducing the absorption of Cd by rice and simultaneously promoting rice growth and improving rice yield. It is a type of Cd-contaminated soil remediation material with a potential application prospect. The results can provide scientific basis for farmland restoration and agricultural safety production of Cd-contaminated acidic purple soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Grão Comestível/química
2.
Huan Jing Ke Xue ; 45(3): 1655-1664, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471877

RESUMO

The aim of this study was to explore the effects of four amendments on soil fertility and labile carbon fraction characteristics of acid purple soil, so as to provide scientific basis for nutrient management and carbon storage stability in purple soil. Field experiments were carried out, and six treatments were set up:no fertilization (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). The contents of soil organic matter, pH, available nutrients, soil integrated fertility index (IFI), dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC), their effective rates, and soil carbon pool management index (CPMI) under different treatments were studied to clarify their relationships. The results showed that:① the application of amendments significantly increased soil pH and the contents of organic matter, alkali-hydrolyzed nitrogen, available phosphorus, and available potassium (P<0.05). The OM and JZ treatments had the most significant increase in soil comprehensive fertility index (P<0.05), with increases of 1.96 and 0.77 and 170.43% and 66.96%, respectively. ② Compared with those in the control treatment, the contents of POC, MBC, and DOC in JZ and OM increased by 110.30% and 84.81%, 61.08% and 46.56%, and 195.87% and 141.67%, respectively. The application of amendments significantly increased the soil carbon pool index (CPI) and CMPI (P<0.05), in which the OM treatment showed the most significant increase, with soil CPI and CMPI values increasing by 107.34% and 90.75% compared with those of the control, respectively. ③ Soil organic carbon and its labile fractions were positively correlated with IFI (P<0.05), and redundancy analysis showed that there were significant differences among different treatments. The interpretation rates of soil IFI, pH, and available potassium to organic carbon and its components reached significant levels, and the order of interpretation rates was IFI(74.6%)>pH (11.7%)>AK(6.5%). The application of vinasse biomass ash and organic fertilizer to acid purple soil had the most significant effect on improving soil fertility and soil quality and was conducive to promoting the accumulation and activation of soil carbon fractions.

3.
Environ Sci Pollut Res Int ; 30(19): 55132-55142, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36884179

RESUMO

Climate change increases the frequency and intensity of extreme weather events. In nature, organisms are often exposed to climatic stressors and contaminants simultaneously, and the effects of contaminants may be modified by climate change and vice versa. Here, the effects of repeated mild heat shocks (0-5 times, 30 °C for 6 h), alone or combined with phenanthrene (PHE) (80 mg kg-1 dry soil), on life-history traits of the springtail Folsomia candida were investigated. The survival, growth, maturation, and reproduction of single juvenile springtails were assessed over a period of 37 days. Increasing number of heat bouts or PHE exposure did not have significant negative effects on overall survival at the termination of the experiment, but the interaction between the two stressors led to complex interactions for the dynamics of survival during the test. Neither body growth nor time to first oviposition was influenced by heat or PHE, but a reduction of egg production with increasing number of heat bouts was observed, and there was an interaction between the two stressors. Further, a trade-off between the number of eggs produced and egg size was observed, indicating that females invested the same amount of energy in reproduction despite exposure to stressful temperature and PHE. These results indicate that egg production (in terms of the number of eggs) was a more sensitive indicator of the combined effects of mild heat shocks and PHE than growth, and there was a trade-off between survival and egg production.


Assuntos
Artrópodes , Fenantrenos , Animais , Feminino , Resposta ao Choque Térmico , Reprodução , Oviposição , Fenantrenos/farmacologia
4.
Sci Total Environ ; 873: 162403, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841403

RESUMO

Temperature variability in soils is expected to increase due to the more frequent occurrence of heat waves, putting species under thermal stress. In addition, organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are released into the environment due to anthropogenic activities. Both stressors negatively impact terrestrial organisms and may interact with each other. Here, we subjected the soil living enchytraeid, Enchytraeus albidus, to combined exposure to phenanthrene (PHE; 0, 10, 20, 40, and 80 mg kg-1 dry soil) and a range of temperature treatments (constant temperature (CT): 10, 15 and 20 °C; different mean temperature with the same daily temperature fluctuation (DTF-5): 10 ± 5, 15 ± 5 and 20 ± 5 °C; daily temperature fluctuation with the same mean, but different amplitudes (DTF-A): 20, 20 ± 2, 20 ± 5 and 20 ± 7 °C). We measured internal PHE concentration in adults and found that an increase in mean temperature significantly increased the internal PHE concentration. The production of juveniles was measured using a standardized test. We found a synergistic interaction between the temperature amplitude (DTF-A treatments) and PHE on the reproduction of E. albidus. The EC50 of reproduction decreased with increasing amplitude. These results show that the negative effects of PHE on E. albidus can be magnified if stressful temperatures are reached (although briefly) during diurnal fluctuations of soil temperature. Our results highlight the importance and inclusion of extreme thermal events in the risk assessment of pollutants.


Assuntos
Poluentes Ambientais , Oligoquetos , Fenantrenos , Poluentes do Solo , Animais , Temperatura , Solo , Fenantrenos/toxicidade , Poluentes do Solo/toxicidade
5.
Chemosphere ; 311(Pt 2): 137119, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334742

RESUMO

Climate change has intensified the occurrence of heat waves, resulting in organisms being exposed to thermal and chemical stress at the same time. The effects of mild heat shock combined with sublethal concentrations of phenanthrene (PHE) on defense mechanisms in springtails Folsomia candida were investigated. The transcription of Heat Shock Protein 70 (HSP70) was significantly upregulated by heat shock but tended to reach the control levels after 42 h of recovery. The transcription of cytochrome P450 3A13 (CYP3A13) was upregulated 3-13 fold by PHE but suppressed by heat shock. The suppression by heat shock might contribute to the reduced detoxification of PHE during high-temperature exposure. In line with this, we found that the internal PHE concentration was approximately 70% higher in heat-shocked springtails than in animals kept at control temperature. In general, the transcription of genes encoding enzymes of detoxification phase Ⅱ (glutathione S-transferase 3) and phase Ⅲ (ABC transporter 1) and the activity of antioxidant defense enzymes (superoxide dismutase and catalase) were less influenced than genes encoding phase I detoxification mechanisms (CYP3A13). These results indicate that heat shock delays the detoxification of PHE in springtails.

6.
J Comp Physiol B ; 192(3-4): 435-445, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35312816

RESUMO

Tolerance to thermal extremes is critical for the geographic distributions of ectotherm species, many of which are probably going to be modified by future climatic changes. To predict species distributions it is important to understand the potential of species to adapt to changing thermal conditions. Here, we tested whether the thermal tolerance traits of a common freeze-tolerant potworm were correlated with climatic conditions and if adaptation to extreme cold constrains the evolutionary potential for high temperature tolerance. Further, we tested if evolution of thermal tolerance traits is associated with costs in other fitness traits (body size and reproduction). Lastly, we tested if slopes of temperature-survival curves (i.e., the sensitivity distribution) are related to tolerance itself. Using 24 populations of the potworm, Enchytraeus albidus Henle (Enchytraeidae), collected from a wide range of climatic conditions, we established a common garden experiment in which we determined high and low temperature tolerance (using survival as endpoint), average reproductive output and adult body size. Heat tolerance was not related to environmental temperatures whereas lower lethal temperature was about 10 °C lower in Arctic populations than in populations from temperate regions. Reproduction was not related to environmental temperature, but was negatively correlated with cold tolerance. One explanation for the trade-off between cold tolerance and reproduction could be that the more cold-hardy populations need to channel energy to large glycogen reserves at the expense of less energy expenditure for reproduction. Adult body size was negatively related to environmental temperature. Finally, the slopes of temperature-survival curves were significantly correlated with critical temperature limits for heat and cold tolerance; i.e., slopes increased with thermal tolerance. Our results suggest that relatively heat-sensitive populations possess genetic variation, leaving room for improved heat tolerance through evolutionary processes, which may alleviate the effects of a warmer future climate in the Arctic. On the other hand, we observed relatively narrow sensitivity distributions (i.e., less variation) in the most heat tolerant populations. Taken together, our results suggest that both cold and heat tolerance can only be selected for (and improved) until a certain limit has been reached.


Assuntos
Frio Extremo , Oligoquetos , Animais , Regiões Árticas , Temperatura Baixa , Temperatura Alta , Oligoquetos/fisiologia , Solo , Temperatura
7.
J Therm Biol ; 97: 102865, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863429

RESUMO

Live feed organisms are essential for the larval stages of many fish species grown in aquaculture, and juvenile fish reared on live feeds often exhibit higher survival and growth than those reared on formulated feed. The terrestrial enchytraeid (white worm), Enchytraeus albidus, has potential as a sustainable source of live feed because it can easily be mass produced, feeds on a wide range of organic waste materials and has high contents of protein and long-chain poly-unsaturated fatty acids. In the present study, we observed the effect of temperature on population growth over five months using soil microcosms. At the outset, each microcosm was supplied with approximately the same number of cocoons. Hatched enchytraeids were given rolled oats ad libitum as feed. We followed the population growth at seven temperatures in the range of 4-25 °C and investigated body composition in order to find optimal temperature for mass production. Results showed that E. albidus has a broad thermal optimum range and displays almost similar biomass production in the range of 15-22 °C with specific growth rates between 6.5 and 6.8%. In this temperature range, protein contents were 40-45%, glycogen contents 20-25% and total fatty acid contents 15-20% of dry weight. The temperature had a highly significant effect on fatty acid composition. In particular, the abundance of omega-3 fatty acids (18:3ω3 and 20:5ω3) was largest at low temperature. For what concerns achievable density of worms in mass cultures, our results surpassed previous results and showed that densities close to 100 g L-1 substrate are realistic. Maximum production of biomass can likely reach 80 g live worms L-1 month-1 at temperatures between 15 and 22 °C.


Assuntos
Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Temperatura , Ração Animal , Animais , Ácidos Graxos/metabolismo , Glicogênio/metabolismo , Nitrogênio/metabolismo , Proteínas/metabolismo
8.
Environ Sci Technol ; 55(3): 1876-1884, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448851

RESUMO

Although the toxicokinetics of organic pollutants in soil invertebrates under optimal and constant temperature has been widely reported, their uptake, elimination, and bioaccumulation under suboptimal temperatures, and especially daily fluctuating temperature (FT) regimes have received only little research attention. In this study, the uptake, elimination, and bioaccumulation of phenanthrene (PHE) in Enchytraeus albidus (Oligochaeta) under different constant temperatures, and an FT regime were investigated in a natural soil. In general, the PHE concentrations in worm tissues reached steady state within 14 days at different temperatures. The uptake (ku) and elimination (ke) rate constants and the bioaccumulation increased with increasing temperature likely because of an increased diffusivity of PHE into the worms and an increased metabolic rate. Interestingly, the bioaccumulation factor of PHE in E. albidus showed a positive relationship with temperature because the slope of the ku-temperature relationship was larger than that of the ke-temperature relationship. Further, the uptake and elimination rate constants were larger under the FT regime than at the constant average of the fluctuating temperature. These findings suggest that, climatic conditions, especially daily fluctuating temperatures, should be considered for the assessment of the toxicokinetics of organic pollutants in terrestrial organisms.


Assuntos
Oligoquetos , Fenantrenos , Poluentes do Solo , Animais , Fenantrenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Temperatura , Toxicocinética
9.
Environ Sci Pollut Res Int ; 27(35): 43638-43645, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737783

RESUMO

The impact of soil lead (Pb) pollution on survival, growth, and reproduction of the collembolan, Folsomia candida, and Pb compartmentation in its gut and remaining body parts were studied by exposing animals to laboratory-spiked soil. The survival, growth, and reproduction of F. candida were significantly reduced by increasing soil Pb concentration. The LC50 values of survival based on total and CaCl2-extractable Pb concentration in soil were 2562 mg kg-1 and 351 mg kg-1, respectively. The EC50 values of reproduction were 1244 mg kg-1 and 48 mg kg-1, respectively. The Pb concentration in whole body, gut, and remaining body parts was significantly increased with the increase of soil Pb concentration and followed an exponential increase when the soil Pb concentration was equal to or above a threshold (1000 mg kg-1 for whole body and remaining body part, 500 mg kg-1 for gut). Below this threshold, these relationships were linear. The Pb concentration in the gut was higher than whole body and remaining body part of F. candida, and the threshold of internal Pb concentration at which F. candida can compensate was in the range 7-13 mg Pb kg-1 dry animal (corresponding to soil Pb concentration 500-1000 mg Pb kg-1 dry soil). The results indicate that reproduction of F. candida was a more sensitive indicator of lead toxicity than survival and growth. Pb was mainly accumulated in the gut of F. candida. We discuss the internal Pb concentration as an indicator of adverse effects in the risk assessment of soil Pb pollution.


Assuntos
Artrópodes , Poluentes do Solo , Animais , Poluição Ambiental , Chumbo/toxicidade , Reprodução , Solo , Poluentes do Solo/toxicidade
10.
Environ Pollut ; 254(Pt B): 113071, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454566

RESUMO

Climatic stressors and chemicals should not be treated as isolated problems since they often occur simultaneously, and their combined effects must be evaluated including their possible interactive effects. In the present study we subjected springtails (Folsomia candida) to combined exposure to phenanthrene and dynamic heat cycles in a full factorial experiment. In a microcosm experiment, we studied the population growth of springtails subjected to a range of sub-lethal concentrations of phenanthrene. During the 28-day experiment we further subjected microcosms to varying numbers of repeated dynamic heat cycles (0-5 cycles) simulating repeated heat waves. We found a synergistic interaction between the effects of phenanthrene and the number of heat waves on both body mass of adults and juvenile production of F. candida showing that the negative effects of phenanthrene were intensified when animals were heat stressed, and/or vice versa. This interaction was not related to internal concentrations of phenanthrene in adult springtails, nor was it due to altered degradation of phenanthrene in soil. We argue that both phenanthrene (by its partitioning into membrane bilayers) and heat have detrimental effects on the physical conditions of cellular membranes in a dose-dependent manner, which, under extreme circumstances, can increase membrane fluidity to a level which is sub-optimal for normal membrane functioning. We discuss the possibility that the synergistic interactions subsequently reduce life-history parameters such as growth and reproduction.


Assuntos
Artrópodes/fisiologia , Resposta ao Choque Térmico , Fenantrenos/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Temperatura Alta , Fenantrenos/metabolismo , Reprodução/efeitos dos fármacos , Solo , Poluentes do Solo/metabolismo
11.
Environ Sci Pollut Res Int ; 25(3): 2889-2898, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143931

RESUMO

Induction of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) and the avoidance of potentially toxic metals in soil by Folsomia candida were investigated. Both laboratory-spiked and field-polluted agricultural soils were used. Cadmium (Cd) concentrations in body tissues, animal avoidance behaviour and physico-chemical properties of the field soils were also determined. In laboratory Cd-spiked soils, the CAT and SOD activities in the Cd treatments were 71.1-94.7 and 1.31-4.55 times higher than in the control, respectively. In field-polluted agricultural soils, the CAT and POD activities generally increased with increasing pollution index (PI Nemerow ) of soil Cd, Cu, Pb and Zn. The CAT, POD and SOD activities at different PI Nemerow were 65.7-128, 30.1-180 and 36.5-95.8% higher than in the control, respectively. In line with the enzyme activities, Cd concentrations in the animal bodies were 8.31-15.1 and 3.21-10.0 times higher than in the control in spiked and field-polluted soils, respectively. Avoidance behaviour also increased with increasing metal concentrations in both soils. The effects of metals on CAT, POD or SOD activity were influenced by soil properties such as soil texture and pH. These results indicate that the antioxidant enzymes activities of F. candida can be induced by heavy metals and potentially used to assess the toxicity, and also that soil properties must be considered in the analysis of enzyme activities in different types of field soils.


Assuntos
Antioxidantes/metabolismo , Artrópodes , Aprendizagem da Esquiva/efeitos dos fármacos , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/enzimologia , Modelos Teóricos , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...